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Abstract

In this paper techniques from multidimensional scaling and
graph drawing are coupled to provide an overview-and-detail
style method for visualising a high dimensional dataset whose
attributes change over time. The method is shown to be useful
for the visualisation of movements within a large set of fund
manager’s stock portfolios.
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1 Introduction

Perhaps due to the conservative nature of capital mar-
ket research or possibly an unwillingness to publish
profitable techniques, methods for visualising finan-
cial and capital market data tend to be unambitious.
Most “state-of-the-art” stock market visualisations
are:

• variations on time-series charts which show vari-
ations in price of a small number of shares over
time (Tegarden 1997)

• multidimensional scalings showing correla-
tions between share price or other attributes
(Brodbeck, Chalmers, Lunzer & Cotture 1997)

• glorified pie charts showing market share of sec-
tors or stocks (Jungmeister & Turo 1992).

This paper is an attempt to push the boundaries
by showing that it is possible to visualise the chang-
ing interests of thousands of fund managers over a
period of time in such a way that an analyst can po-
tentially diagnose the state of the market, learn from
the apparent behaviour or even identify illegal activ-
ities. Further more, even though the technique was
conceived for visualising such portfolio data it will
have application in any field where the changing at-
tributes of a large set of high dimensional data needs
to be studied.

The dataset that inspired this research was UK
stock market registry data in which the changing
portfolio contents of all the registered fund managers
is held at a granularity of approximately one month.
The data contains in the order of 3,000 portfolios
which are made up of a selection of over 2,000 dif-
ferent stocks from 54 different market sectors. To
obtain a useful picture of the movements within this
dataset at least twelve months’ worth of this data
must be available. Obviously, presenting such a large
body of data to an analyst in a visual form is going to
challenge their “perceptual bandwidth”. In (Dwyer &
Eades 2002) I presented a graph-visualisation based
method for visualising a relatively small subset of this

data over a few time periods. However, the method
did not scale very well to larger samples. (Card,
Mackinlay & Schneiderman 1999) describe various
methods for allowing users to effectively navigate
through large datasets by showing both an over-all
view and a detailed view. In the over-all view, or
overview, large scale patterns can be observed. Users
can then select a portion of the overview and “zoom-
in” to obtain a more detailed view. In this paper
this overview-and-detail concept is used to produce
a more scalable visualisation method. To provide
the overview for the dataset a visualisation based on
Principal Component Analysis (PCA) is introduced.
The key difference between this PCA based method
and other multidimensional scaling approaches is that
changes over time are clearly shown. This overview
can then be coupled with my earlier graph visualisa-
tion based methods to allow the user to “zoom in” to
the finest level of detail available.

Section 2 provides some background on multidi-
mensional scaling and the PCA method used in this
paper. In sections 3 and 4 a novel system for visu-
alising the results of the PCA dimension reduction
is introduced. Section 5 gives a formal definition of
the graph used in the detailed view and section 6 de-
scribes the layout algorithm used to find an embed-
ding of the graph for visualisation.

2 Multidimensional Scaling

As mentioned above, the dataset consists of several
thousand portfolios each of which contains a selection
of shares from different companies belonging to differ-
ent market sectors. If there are 2,000 different compa-
nies one can think of these portfolios as being points
in a 2,000-dimensional space. Alternatively, they can
be placed by market sector in a 54-dimensional space.
Obviously, to make an intelligible visualisation this
high-dimensional space must be reduced to two or
three dimensions. This is the domain of Multidimen-
sional Scaling (Borg & Groenen 1997), the chief aim of
which is to find a lower dimensional representation for
a high dimensional dataset that preserves, as much as
possible, the relative Euclidean distances between the
data points. Typically, this is achieved by minimising
a stress function for the entire data set. That is, mul-
tidimensional scaling seeks to find a mapping from
an n-dimensional set of proximities between pairs of
data points pij to a configuration of the data X in an
m-dimensional visualisable space: f : pij → dij(X)
where n >> m. Stress can then be defined as the
sum of squared errors between distances in a possible
X and the ideal mapping:

σ =
∑
(i,j)

(f(pij)− dij(X))2



Usually an iterative approach, such as functional
majorisation, is used to find X such that σ is min-
imised. Obviously, for n data points such a method
is going to require at least O(n2) operations per it-
eration to consider the distances between each pair
of points. In the dataset considered in this paper
there are in the order of 3,000 portfolios with a data
point for each of at least 12 monthly samples. There-
fore, the multidimensional-scaling approach needs to
be able to scale up to around 36,000 data points. It
should also have a processing time that will allow for
interactive zooming. For such a large dataset where
the dimensionality of the data is significantly lower
than the number of data points it is more practical to
use a method based on Principal Component Analy-
sis (Borg & Groenen 1997). In PCA the complexity
is based on the dimensionality of the data rather than
the number of points.

PCA aims to find the axes of greatest variance
(principal components) through our m-dimensional
data. The data can then be projected onto the plane
defined by two such axes to obtain a two dimen-
sional representation which captures this variance. Of
course, this does not guarantee to minimise σ but
hopefully an adequate visualisation will be obtained
in reasonable time.

The approach used to find the principal compo-
nents is fairly standard. There are m possible stocks
or market sectors, l different portfolios, k different
temporal samples for each portfolio and therefore
n = k · l data points. The first step is to place all of
this data in an m×n-matrix A such that the columns
are the dimensions and the rows are the data points.
The next step is to find the covariance matrix C of
our data. This is done by transposing the data so
that the barycentre of the points is at the origin:

Bij = Aij −
1
n

n∑
j=1

Aij

and multiplying the resulting matrix B by its trans-
pose to find C:

C =
1
n

BB′

Next, an eigen decomposition is obtained such that
C = QΛQ′ where Q contains the eigenvectors ~q1..m
and Λ is a diagonal matrix of the corresponding eigen-
values. The two eigenvectors with the largest eigen-
values, q1 and q2 are then the principal components.

Finally, we can perform the projection to find x
and y coordinates of the n data points in two dimen-
sions:

xi = ~pi
′q1

yi = ~pi
′q2

where i = 1, ..., n.

3 Displaying temporal changes by extruding
into 3D

The novel visualisation of the 2D PCA projection de-
scribed above involves extruding the data into 3D
such that time is now represented by the 3rd di-
mension. The result is a mass of “worms” crawling
through time. Visualisations in which the third di-
mension is used in a significantly different way to the
other two dimensions are commonly called 2 1

2D and
I will use this terminology in the sequel.

Each of the data points comes from one of k sam-
ples, usually taken at regular intervals in time. Each

of the n data points above is now assigned a z coor-
dinate such that z = c · (i−k/2) where i = 0...(k− 1)
and c is a constant scale factor. When drawing, each
pair of adjacent points representing the same portfo-
lio is connected with a line segment to produce the
worms.

It is worth noting that in any type of multidimen-
sional scaling the position of data points in the re-
duced dimensional space relative to the axes is mean-
ingless. The important thing is that clusters and out-
liers are clearly visible. In the “worm” visualisation
an analyst can see how various portfolios move in and
out of clusters over time. This also allows colour and
thickness of the lines to be used to display additional
attributes as they change over time.

The resulting visualisation is shown in Figure 1.
The collection of dots on the right-hand side is a cross
section of the 2 1

2D worm view. The particular time
period shown in cross section is selected by moving
the transparent blue disk (the “water-level”) on the
left. Colour and alpha-transparency of the worms and
their corresponding points in the slice view are used to
convey extra attributes. In the figure colour is used
to indicate whether a portfolio has increased or de-
creased in value between time periods. The worms are
shaded from dark to light green to show an increase in
value or dark to light red to show loss. Solid black in-
dicates the portfolio has broken even. The total value
of the fund is indicated by transparency. In the fig-
ure transparency potentially ranges from invisibility,
indicating a zero value fund, to complete opacity, in-
dicating the fund is worth more than £100,000. The
other user interface features provided by the interface
are described in more detail in Section 4.

An interesting feature of the data that can be seen
in Figure 1 is that fund managers generally tend to
move either toward or away from a single central clus-
ter. Currently, our analysis suggests that this clus-
ter contains portfolios that are weighted closer to the
market index. That is, more conservative portfolios
that are weighted to hedge against significant volatil-
ity. The fact that outliers tend to move either towards
or away from this central cluster (rather than around
it) may suggest that when they are confident (possi-
bly buoyed by a stronger market) they move towards
more volatile, higher risk, stocks and when the market
is less stable they move back towards the safer “blue-
chip” shares in the index. Of course it may also be
an artifact of PCA. Work is continuing to investigate
this phenomenon in greater depth.

4 User Navigation

An essential part of any 3D (or 2 1
2D) visualisation

is providing the user with the ability to freely ro-
tate, zoom-in or otherwise “fly” around the 3D model.
When viewing a static projection of a 3D visualisation
the user has no sense of depth and the extra dimension
is wasted1. In our system this capability is provided
in a fairly standard way with mouse interaction.

However, PCA gives us the ability to navigate
around the dataset in some fundamentally different
ways. Using the two eigenvectors associated with the
two largest eigenvalues to define the projection plane
by definition captures the greatest variance in the
data. However, one can just as easily use any pair
of eigenvectors. Allowing the user to cycle through
the largest eigenvectors to choose the projection plane
provides a high-dimensional rotation which may cap-
ture different aspects of variation.

1Indeed it is difficult to properly show the use of 3D visualisa-
tion in a paper with only static black and white figures!



Figure 1: A worm-view visualisation showing the movements for the 391 largest fund managers over a 12 month
period.

A zoomed view is also easily obtained by produc-
ing another PCA projection of a subset of the visible
data. In Figure 1 the user is in the process perform-
ing such a zooming operation. In the cross-section
on the right hand side they have selected a subset of
portfolios by sweeping out a rectangular area with the
mouse. They can then select a subset of the available
time samples by moving the water-level up or down,
thus creating the transparent box seen in the 2 1

2D
view on the left-hand side of the figure. The selected
subset of the data will then be re-projected as be-
fore and the zoomed view shown in a new window.
The zoomed window is shown in Figure 2. An exam-
ple where a similar PCA based rotation and zooming
strategy is used to view high dimensional graph em-
beddings is given in (Harel & Koren 2002).

5 Detailed Graph Visualisation Based View

The “worm” visualisation described thus far provides
us with an overview of our data set. In order to cap-
ture broad movements across as much data as possible
the PCA based dimensional scaling was a necessary,
though severe, abstraction of the underlying detail.
To visualise the detailed behaviour of an individual
fund-manager as they re-balance their portfolio a dif-
ferent approach is required.

Suppose an analyst selects an individual worm
from the overview for closer inspection. Effectively,
they have isolated a set of data for a single portfolio
over a number of time periods. In our dataset this
includes share price data and the count of shares of a
particular type held in the portfolio. That is, we have
two matrices in which the columns are associated with
market sectors (or any other aggregation of stocks, or
individual stocks) and the rows are associated with
each of the sample times (the examples shown here
have 12 monthly samples). In the first matrix P we
have share price data. When an aggregation of shares
is used this will be the average unit price across the
aggregate. The second matrix Q contains the counts
of shares held in the portfolio.

These matrices could be visualised by simple 3D

area charts. For example, Figure 3 shows the share
price data P , in this case the average share price for
each of n = 50 market sectors for a year’s worth of
data. Figure 4 shows the counts of shares held in a
particular fund manager’s portfolio across the same
time period. Figure 5 charts the total value of the
portfolio across the time period, where the value x at
each month j is:

xj =
n∑
i

PijQij

The relatively flat curve in Figure 5 shows that
by re-weighting the portfolio the fund manager has
managed to more or less even out the volatility in the
share prices. In visualisations like that of Figures 3
and 4 we can see a lot of activity taking place. How-
ever, one must ask whether it is possible to produce
a visualisation which focuses an analyst’s attention
more specifically on the fund manager’s movement
between market sectors.

In (Dwyer & Eades 2002) I proposed a graph vi-
sualisation based approach for visualising the move-
ments of fund managers between different stocks or
market sectors (in the sequel I’ll refer only to sectors).
The graph for fund manager movement is defined as
G = (V,E) consisting of a set V of vertices repre-
senting sectors and a set E of edges where each edge
e(u, v) ∈ E represents “movement” of one or more
fund managers from sector u ∈ V to sector v ∈ V .

For the matrix Q of share counts in each sector we
can construct a graph in which a vertex represents
each non-zero column. Beginning with the second
row we compare the values in each column against
that column’s value in the previous row. For each
column (sector) showing a decreased holding we con-
struct an edge to all the columns with an increased
holding. To allow the user to focus on more signifi-
cant movements they can adjust a threshold (τe) in
increase or decrease of stock price below which no
edge is created. We continue comparing each pair of
rows to create layers of edges (ie, a set of edges for
each time period) until all rows have been examined.



Figure 2: A zoomed view of the highlighted portion of Figure 1. 8 months are shown.
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Figure 3: A 3D area chart showing the fluctuations in share price in a particular portfolio over 12 months.
Each of the columns is a different stock, the depth axis is time (most recent at the front) and the vertical
(labelled axis) shows share price in GBP (British Pounds Stirling).
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Figure 4: A 3D area chart showing the changing count of shares in the portfolio over 12 months. The axes are
as in Figure 3 except the vertical axis which shows count of shares
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Figure 5: This chart shows the net effect on the
total value of a portfolio of the share price fluctu-
ations, shown in Figure 3, and the fund manager’s
re-weighting, shown in Figure 4.

To visualise this graph so that it is easy to see at
what time different movements occurred it is possi-
ble to use a 2 1

2D paradigm similar to that followed
for the worm view. That is, the graph drawing is ex-
truded into the third dimension, see figures 8, 9 and
10. The vertices become pillars or columns parallel to
the new third axis and the edges are placed perpen-
dicular to the axis at a level dependent on the time
(matrix row) at which the movement they represent
occurred. The total value of a market sector at each
point in time (ie, PijQij) can be shown by setting the
radius of the column vertex representing that market
sector. Clutter in the graph may be reduced by only
including vertices for which the maximum value is
greater than a threshold τv. In other words, it is only
necessary to include market sectors which make up a
significant proportion of the portfolio. The changing
average share price information from P can be shown
by colouring each segment of the column. In the ex-
amples the columns are shaded towards green if there
is an increase in average share price from one period
to the next. The shading tends towards red if there
is a decrease. The default colour, light grey, means
there is no change.

In the extruded 2 1
2D view the edges can be shown

as tubes or pipes between the columns. The total
value of a given movement is shown by adjusting the
radius of the edges. That is for an edge showing a
change in holding from time samples k and k + 1 be-
tween vertices representing columns i and j in P and
Q the radius of the edge is set to:

radius ∝ (Qi(k+1)−Qik)Pi(k+1)+(Qjk−Qj(k+1))Pj(k+1)



Figure 10: The stratified graph from 8 viewed from
above.

6 Stratified Graph Layout

I have chosen to refer to such graphs in which edges
appear in layers corresponding to a particular time
period as “Stratified” graphs2. Visualisations of
Stratified graphs have appeared in the literature from
time to time but the question of how to arrange them
is yet to be thoroughly examined. (Koike 1993) was
possibly the earliest, using a stratified graph to show
the flow of control in parallel software execution, but
the author left placement of the columns representing
vertices to the user. (Brandes & Corman 2002) chose
to represent social group interactions as stratified
graphs using the well known force-directed method
simulating physical attractive and repulsive forces
in an iterative algorithm that attempts to balance
the opposing forces typically creating an aesthetically
pleasing arrangement. In (Dwyer & Eades 2002) we
used a similar force-directed method but allowed the
columns to bend in order to further reduce the forces.
We showed that this last variation was useful in high-
lighting clusters in the graph. A stratified portfo-
lio graph arranged using the force-directed approach
(without bendy columns) is shown in Figure 6.

In this paper another well known layout method
is introduced to the problem of stratified graph
layout: the Sugiyama (or Layered Graph Layout)
Algorithm(Eades & Sugiyama 1990). The chief ad-
vantage of the Sugiyama algorithm over the other lay-
out methods described is that it clearly shows flow in
directed graphs. This is because the first stage of the
algorithm creates a layering of the nodes such that net
sources (nodes with mostly outgoing edges) are usu-
ally placed closer to the top and net sinks (nodes with
mostly incoming edges) are placed nearer the bottom.
The final arrangement thus ensures that most of the
edges are downward pointing and net flow can be said
to be from top to bottom.

This graph theoretic concept of flow is useful when
considering layout of our portfolio movement graphs
in that it roughly corresponds to the flow of money

2borrowing the geological term used to describe rock consisting
of layers of sediment. I use this term to avoid confusion with the
conventional usage of the term “layered graph drawing” associated
with the Sugiyama algorithm

between different stocks. That is, source nodes rep-
resent stocks that are mostly being sold and sink
nodes represent stocks that are more commonly being
bought.

To generate the layout shown I use an implemen-
tation of the Sugiyama algorithm based on the Dot
program that comes with AT&T’s Graphviz package
(http://www.graphviz.org). I have modified this
algorithm to handle separate edge sets for each of the
strata. Specifically this involved the following modi-
fications:

• the edge concentration3 method was changed so
that edges on different strata would not be con-
centrated

• the crossing minimisation was changed such that
only crossings between edges on the same strata
are considered. The idea being that when edges
on different strata overlap the crossing can be
resolved by rotating in 3D

7 Conclusion / Further Work

I have demonstrated two visualisations for fund man-
ager movement data which may be coupled to provide
an holistic, overview and detail system. The first vi-
sualisation, the PCA worm view, compresses a great
deal of information about the entire dataset into a
single scene and takes advantage of the speed and
flexibility of PCA to allow a user to quickly focus in
on smaller regions of detail. The second visualisation
paradigm, the graph based column view, brings to-
gether the most important information from all three
charts shown in figures 3,4 and 5 into a single visuali-
sation and draws an analysts attention to the features
in which they are most interested. Particularly, it al-
lows an analyst to directly see the correlation (if any)
between stock price and a fund managers behaviour
in re-weighting the portfolio.

In this paper a broad overview and definition of
these two paradigms has been given. Work is pro-
gressing on validating the techniques by using them
in a field study with industry experts.

The problem of extending existing layout algo-
rithms such as the Sugiyama algorithm, to produce
the best possible results for stratified graphs is also
ongoing.

Finally, since the paradigms proposed in this paper
should be applicable to any high-dimensional, multi-
variate dataset I hope in future to test their utility in
other domains.
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Figure 7: The stratified graph from 6 arranged using the Sugiyama algorithm.



Figure 8: Another stratified graph showing the movements in the portfolio from Figure 7 in lower detail. In
this figure fewer edges are visible since τe± has been raised to 8%.

Figure 9: The stratified graph from 8 viewed from the side to better show the strata.
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