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Abstract 
This paper describes a novel approach to representing 
experimental biological data in metabolic networks.  The 
aim is to allow biologists to visualise and analyse the data 
in the context of the underlying processes. Biological 
networks can be modelled as graphs and visualised using 
graph drawing methods. We present a general method for 
mapping experimental data onto nodes and edges of a 
graph and to visualise the data-enriched networks in 2½ 
dimensions such that the data is easy to understand. Our 
focus is on time series data occurring during 
developmental analysis. We demonstrate the utility of our 
approach by a real world example from the seed 
development of barley (Hordeum vulgare). 

Keywords: Metabolic networks, Visualisation, Graph 
drawing, Metabolic profiling, Time series data 

1 Introduction 
Detailed knowledge of metabolic functionality and 
control represents an essential basis for plant functional 
genomics. To analyse major metabolites of primary 
metabolism (e.g. sugars, sugar alcohols, amino acids, 
intermediates of glycolysis and citrate cycle, nucleotides 
and their sugars) both enzymatic and chromatographic 
methods are most widely used. More recently, new tools 
for metabolic profiling have become available. Mass 
spectroscopy is coupled to liquid and gas chromatography 
(Buchholz et al. 2001, Fiehn et al. 2000, Roessner et al. 
2000). This novel methodology offers the fascinating 
possibility of analysing hundreds of metabolites 
simultaneously in a quantitative and comprehensive 
manner, finally aiming to determine the entire 
metabolome.  

These experimental methods output huge amounts of data 
and biologists require tools to assist in the analysis of 
these large data sets. To make sense of the experiments 
this data has to be interpreted in the context of the 
underlying biological processes. Biological processes are 
often represented as complex networks such as metabolic 
networks (Michal 1999), signal transduction pathways 
(Schacherer et al. 2001), and protein-protein interaction 
networks (Mayer & Hieter 2000). Dynamic visualisation 
methods have proven to be useful for understanding the 
relationships between the components of the networks 
and have been used in some sophisticated research tools 

(Demir et al. 2002, Širava et al. 2002, Friedrich & 
Schreiber 2003).  

To visualise experimental data several standard methods 
are used (e.g. displaying data in tables, histograms and 
line-graphs) and new approaches have been developed 
such as visualisation of gene expression micro-array data 
(Zhou & Liu 2003). Comparison of single metabolites 
may give a detailed view of individual aspects. However, 
to recognize causal relationships within the metabolic 
network the experimental data has to be represented 
within this network and more sophisticated methods are 
necessary. Existing approaches use static visualisations 
(fixed, pre-computed or hand-drawn drawings) of 
metabolic networks and map the experimental data onto 
predefined positions. In (Nakao et al. 1999) the metabolic 
pathway diagrams of the KEGG system (Kanehisa & 
Goto, 2000) were linked to the EXPRESSION database 
for integration with DNA micro-array data. Wolf et al. 
(Wolf et al. 2000) use static visualisations of metabolic 
pathways from KEGG and in-house sources and display 
protein and mRNA expression data in these diagrams 
such that colours indicate the relative change in 
expression level and reproducibility. However, static 
visualisation has several drawbacks (see Schreiber 2002), 
which negatively impact on this particular application, 
and dynamic visualisation is necessary. Dynamic 
visualisation is the computation of a drawing of the 
network at the time the diagram is needed.  

In this work we combine dynamic network visualisation 
with mapping of experimental data, especially time series 
data about metabolites, onto the networks. This novel 
approach allows an easy visual analysis of processes in 
organisms and may assist users in the analysis of large 
data sets from biological experiments.  

The paper is structured as follows: In Section 2 we define 
the graph model and graph representation we are working 
with, describe how we derive our metabolic networks and 
how the experimental data is mapped onto them. Section 
3 deals with our dynamic visualisation method and some 
implementation aspects. Finally, in Section 4 we use our 
approach for the visual analysis of experimental data 
from the seed development of barley. 



2 Representation of Metabolic Networks 

2.1 Graph Modelling 
A graph G=(V,E) is a mathematical structure which 
consists of a finite set of nodes V and a finite set of edges  
E. Each edge e∈E connects at most two nodes u,v∈V. A 
hyper-graph GH= (V,EH) consists of finite sets of nodes V 
and finite set of hyper-edges EH. Each hyper-edge e∈EH 
connects a set of nodes u1,…,un∈V. A bipartite graph GB= 
(V1∪V2,EB) consists of finite sets of nodes V1 and V2  and 
a finite set of edges EB. Each edge e∈EB connects exactly 
two nodes, one node from the set V1 with one node from 
the set V2. 

From a formal point of view a metabolic network is a 
hyper-graph. The nodes represent the metabolites and the 
hyper-edges represent the reactions. Each hyper-edge 
connects all metabolites of a reaction. A hyper-edge can 
be seen as a n-ary relation between nodes. Hyper-graphs 
can be represented by bipartite graphs, and often 
metabolic networks are modelled as bipartite graphs, 
especially for simulations of such networks (Hofestädt & 
Thelen 1998, Reddy et al. 1993). Here the reactions 
themselves are nodes, and edges are binary relations 
connecting metabolites of reactions with reaction nodes.  

Our interest in this paper is not in simulating metabolic 
networks, rather in simply using graphs to model them. 
Again, in graph G=(V,E) nodes v∈V represent 
metabolites and edges e∈E represent reactions. We use 
additional reaction nodes v∈V only for reactions that 
connect more than two metabolites.  

2.2 Metabolic network data 
The sources of our metabolic network data are the KEGG 
LIGAND database (Goto et al. 2002) and the BioPath 
system (Forster et al. 2002). To build the networks of 
interest two steps were applied: 

1. The data from these databases was transformed into 
graphs and stored as GML files. GML (Graph Modeling 
Language) is a widely used an easily extendible exchange 
format for graphs (Himsolt 1997, Himsolt 2000). All 
networks were merged into one big network of metabolic 
reactions.  

2. We identified the partial network of interest. This 
network is defined by the metabolites for which 
experimental data exists and the main connections 
between these metabolites. 

As part of these steps the network was manually edited 
for the following reasons:   

- The merging of data from different sources 
introduced inconsistencies into the network such 
as different names for the same metabolite. 
There are also some mistakes in the data from 
the databases such as different names for the 
same compound. 

- We have to deal with some plant specific 
physiological aspects that are not correctly 

represented in the above-mentioned general 
metabolic pathway databases. 

As an example for the resulting network, Figure 1 shows 
the network for the data discussed in Section 4. 

 
Figure 1: The metabolic network for the experimental 

data described in Section 4. Different colours are 
used to distinguish different pathways in the 
network such as glycolysis and TCA cycle.  



2.3 Experimental biological data 
Given the metabolic network of interest as a GML file we 
can add the experimental data to the metabolites and 
reactions. A GML file consists of a hierarchical key-value 
list: a key is a sequence of alphanumeric characters (e.g. 
graph, id), and a value is a string, an integer, a floating 
point number, or a list of key-value pairs. Using GML it 
is possible to attach additional information to every 
object.  

We add information about our experimental time series 
data into the graph. If, for example, for a specific 
metabolite such information exists (the metabolite was 
measured and quantified over several days), its node is 
assigned the data about the measured amount on the 
different days. An example of a GML file representing a 
network and additional time series data looks like: 

graph [ 
    node [ 
        id 1 
        label "Sucrose" 
        experimental_data [ 
            day "day 0" 
            value 1534 
            day "day 2" 
            value 2801 
            day "day 4" 
            value 2914 
        ] 
    ] 
    node [ 
        id 2 
        label "Fructose" 
        experimental_data [ 
            day "day 0" 
            value 2341 
            day "day 2" 
            value 2894 
            day "day 4" 
            value 2786 
        ] 
    ] 
    edge [ 
        id 1 
        label "" 
        experimental_data [ 
            day "day 0" 
            value 54 
   … 
        ] 
    ] 
] 

3 Dynamic visualisation method 
The mathematical model, which we call a “graph”, is not 
related to a visual representation of the graph (and 

therefore to a visualisation of the underlying metabolic 
network). The problem of visualising these structures can 
be formulated as a graph drawing problem (Di Battista et 
al. 1999). Some biological networks and hierarchies have 
been successfully visualised using standard graph 
drawing algorithms: protein-protein interaction networks 
are often laid out by force-directed graph drawing 
algorithms (Basalaj & Elbeck 1999) and hierarchies are 
usually visualised using tree drawing algorithms 
(Reingold & Tilford 1981).  

The structural characteristics of metabolic networks make 
them particularly amenable to layered graph drawing 
methods (Becker & Rojas 2001, Schreiber 2002). Special 
extensions of these methods have been developed for the 
dynamic visualisation of metabolic pathways (Becker & 
Rojas 2001, Karp & Paley 1994, Mendes 2000, Schreiber 
2002, Širava et al. 2002).  However, these approaches 
were concerned with 2D representations of the networks.  
Note that the notion of layered graph drawing, as used 
above, usually means arranging the nodes in the network 
onto layers in 2D such that edges always connect nodes 
on different layers.  Also, the layering is chosen such that 
as many edges as possible point downward in order to 
better show flow from sources to sinks.  Figure 1 is an 
example of a layered graph drawing. 

In (Brandes et al. 2003) an additional type of layering 
was introduced.  The 3rd dimension available in modern 
computer graphics was utilised to stack a set of related 
biochemical pathways for easy comparison.  We call this 
style of constrained 3D graph visualisation “2½D”, the 
distinction being that only two dimensions are used to 
arrange the graphs and the third dimension is used for a 
different purpose. Our focus for this paper is to use a 
similar technique to visualise a metabolic network’s 
structure as well as showing the amounts of metabolites 
and the flow within the network as they change over time.  
That is, the third dimension is now mapped to the ordinal 
variable of time. 

The visualisation shown in Figure 2 was produced using a 
tool developed by the authors called WilmaScope 
(http://wilma.sourceforge.net).  The 2D layered layout 
used is produced with a modified version of the dot 
program (Koutsofios & North 1993) distributed with the 
GraphVis graph visualisation system 
(http://www.graphviz.org).  WilmaScope then extrudes 
the 2D drawing into the third dimension in order to show 
the time series on each level of the stack.  WilmaScope 
provides many facilities for interactively browsing a 
graph, for example a user can zoom into an individual 
node, select only a portion of the graph to show or they 
can set a weight threshold for edges to be shown.  These 
facilities are very useful in browsing the metabolic 
networks discussed in this paper and in some of the 
images shown parts of the network are hidden in order to 
better show detail of time series. 



Figure 2: A screenshot of the WilmaScope system examining a 2½D visualisation of the metabolic network from 
Figure 1

In this visualisation each level or slice in the 2½D structure 
corresponds to sample data taken on different days, with 
the oldest data (day 0) on the bottom slice and the most 
recent (day 20) at the top.  The small window floating 
before the “Wilma” window in Figure 2 shows a cross-
section through the lowest slice of the stack and 
corresponds with the semi-transparent blue plane that can 
be seen in the 2½D view.  This “water-level” can be moved 
up or down to highlight an individual cross section of the 
graph.  

Using this approach we are able to visualise the time series 
data for each metabolite in-situ. That is, each metabolite 
can be shown as a histogram giving the measured values at 
each point in time.  Where time series data for a particular 
metabolite is not available, or is not interesting to the user, 
the metabolite is shown as a narrow column.  Figure 3 
shows two possible 2½D representations for a single 
metabolite with associated time series data.  Each section 
represents the measured value of the metabolite on a 
particular day.  In the representation on the left a square-
root scale is used to determine the radius such that the area 
of the disc is directly proportional to the amount of the 
metabolite.  In the histogram-like representation on the 
right a log scale is used to better fit the bars into the space 
available.  Note that the transparent pink box makes it easy 
to compare each bar against the maximum value. Figure 5 

shows the complete network using the disc 
representation.  3D graphics is most effective in an 
interactive environment in which the user is able to 
freely rotate or fly around the model.  Figure 6 shows 
the network projected in parallel to better show the 
slices in the 2½D structure and rotated to give a feeling 
of depth.   

The diameter and colour of the reaction edges can also 
give an indication of flow given by the activity and 
quantity of enzymes (this could, for example, be 
derived from expression data).  Note that in the 
application example (Section 4) such information is 
not yet available from our experiments. This data is an 
estimate based on the quantity of source and sink 
metabolite and is shown here purely to illustrate the 
potential of the visualisation paradigm. 



 
Figure 3: A close-up of two possible 2½D 

representations for a single metabolite.  Each section 
represents the measured value of the metabolite on a 
particular day.  In the representation on the left a 
square-root scale is used to determine the radius such 
that the area of the disc is directly proportional to the 
amount of the metabolite.  On the right hand side a 
log scale is used and the transparent pink box makes 
it easy to compare each bar against the maximum 
value. 

4 Application example 

4.1 Metabolic data  
To analyse major metabolites of primary metabolism both 
enzymatic and chromatographic methods are most tools for 
metabolic profiling have become available. Mass 
spectroscopy is coupled to liquid and gas chromatography 
(Fiehn et al. 2000; Roessner et al. 2000; Buchholz et al. 
2001). We used this approach together with conventional 
chromatographic techniques (ion chromatography, HPLC) 
to investigate the metabolite pattern of growing barley 
caryopses (Hordeum vulgare). 

The agronomical importance of cereal seeds is principally 
based on their accumulation of storage products, mainly 
starch and proteins. Despite extensive studies on the 
structure, biochemistry and genetics of developing grains 
(Duffus & Cochrane 1982; Olsen 1992; Bewley & Black 
1994) the regulatory mechanisms underlying their high 
storage capacity are largely unknown. During their 
development, caryopses undergo distinct growth phases 
and differentiation events. These in turn are reflected in 
changes of the metabolic state. Biosynthetic fluxes increase 
in a specific temporal and spatial manner.  

To investigate these patterns, time series analyses of 
metabolites are required. Caryopses were harvested every 
2 days over a growth period of about 20 days post 
anthesis. Seed development was analysed from 0 to 20 
days post anthesis (DPA), covering the pre-storage, 
intermediate and storage phase. In this period the 
endosperm enlarges, becoming the main storage organ of 

cereal seeds. Within the pre-storage phase caryopsis 
consists mainly of pericarp tissue, embedding the 
liquid endosperm. Increase in the fresh weight and 
starch accumulation is low. The subsequent 
intermediate phase begins after endosperm 
cellularisation at 4-5 DPA and proceeds with the 
differentiation of endosperm tissues. Starch 
accumulation starts, although with low synthesis rates. 
During the main storage phase (from 10-11 DPA 
onwards), the high starch synthesis rate is evident. 
About 70 metabolites were measured and quantified. A 
typical example of time series data is given in Figure 4. 

  
Figure 4: A typical example of time series data 

showing the metabolite 3PGA at several days post 
anthesis (DPA). 

4.2 Visual analysis of the experimental data 
We used two different approaches within our 
visualisation method to analyse the experimental data 
in the context of metabolic networks.  

Firstly, the sizes of all nodes were fixed. This size 
represents 100% and the amount of a specific 
metabolite on a specific day was given as a percent of 
the maximal value of this metabolite over all days.  
This approach emphasises the relative change of 
metabolites over time and the relative flow through the 
network. An example of this visualisation style is 
given in Figure 7.  

Secondly, the sizes of nodes were variable, depending 
on the amount of the corresponding metabolites and 
were directly proportional to this amount. In this type 
of diagram the whole amount of metabolites in the 
tissue and the absolute ratio of different metabolites 
can be seen. Whereas the first approach shows relative 
changes this visualisation can be also very useful as 
often the ratio of two metabolites can be important 
(such as the ratio of the absolute amounts of ATP and 
ADP). An example of this approach is shown in Figure 
8. 

As we currently have data from only one such 
experiment, the evaluation and comparison of these 
visualisation styles requires further work. But we 
believe that both approaches will be quite useful for 
the visual analysis of experimental data. 



5 Discussion 
We have presented a novel method for mapping 
experimental data onto nodes and edges of a graph, and for 
visualising these data-enriched networks in 2½ 
dimensions. This allows biologists to visualise and analyse 
experimental data in the context of the underlying 
biological processes. Our focus was on time series data 
and we demonstrated the utility of our approach by an 
example from the seed development of Hordeum vulgare. 

This work is under continuing development and is carried 
out in close cooperation between biologists and computer 
scientists. We have already implemented the visualisation 
system, whereas the construction of the network of interest 
and the mapping of the data onto the network is currently a 
semi-automatic process which needs manual editing. The 
next step will be the development of more automatic 
methods for these parts. We also look forward to 
evaluating our method with more data.  

As mentioned in Section 3, the ability to interact with and 
“fly” around the 2½D graph structures is very important in 
facilitating a users understanding of the model.  The static 
screen shots in this paper do not do them justice.  A 
quantitative user study evaluating the effectiveness of the 
2½D graph visualisation paradigm is planned for the near 
future.  Subjects will complete speed and accuracy tests 
using both a physical model of a 2½D graph structure and 
a set of 2D graphs printed on cards. 

In this work we used metabolite data which is mapped 
onto metabolic networks. In general the described 
approach can be used for other experimental data (e.g. 
transcriptome data) and for mapping of data onto other 
biological networks (e.g. gene regulatory networks). 
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Figure 5: A view of the 2½D visualisation of the 
network using the “disc” representation for the 
metabolites.  

 



Figure 6: 3 parallel projected views of the network, viewed from three different orientations to give the reader a 
better understanding of the 2½D stacking method. WilmaScope allows interactive navigation to explore the 
stacked network from all directions. 

 

 
Figure 7: Detail of the neighbourhood around 

sucrose using the fixed node width style. 

  
Figure 8: The sub-network from Figure 7 shown 

with absolute node size. 

 


